FiniteStrainHyperElasticViscoPlastic

under construction:Undocumented Class

The FiniteStrainHyperElasticViscoPlastic has not been documented, if you would like to contribute to MOOSE by writing documentation, please see Documenting MOOSE. The content contained on this page explains the typical documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.

Material class for hyper-elastic visco-platic flow: Can handle multiple flow models defined by flowratemodel type user objects

Input Parameters

  • internal_var_user_objectsList of User object names that integrates internal variables and computes derivatives

    C++ Type:std::vector

    Options:

    Description:List of User object names that integrates internal variables and computes derivatives

  • strength_user_objectsList of User object names that computes strength variables and derivatives

    C++ Type:std::vector

    Options:

    Description:List of User object names that computes strength variables and derivatives

  • computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the Material via MaterialPropertyInterface::getMaterial(). Non-computed Materials are not sorted for dependencies.

    Default:True

    C++ Type:bool

    Options:

    Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the Material via MaterialPropertyInterface::getMaterial(). Non-computed Materials are not sorted for dependencies.

  • base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases

    C++ Type:std::string

    Options:

    Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases

  • max_substep_iteration1Maximum number of substep iteration

    Default:1

    C++ Type:unsigned int

    Options:

    Description:Maximum number of substep iteration

  • maxiters50Maximum iteration for flow rate update

    Default:50

    C++ Type:unsigned int

    Options:

    Description:Maximum iteration for flow rate update

  • resid_rel_tol1e-06Relative Tolerance for flow rate residual equation

    Default:1e-06

    C++ Type:double

    Options:

    Description:Relative Tolerance for flow rate residual equation

  • blockThe list of block ids (SubdomainID) that this object will be applied

    C++ Type:std::vector

    Options:

    Description:The list of block ids (SubdomainID) that this object will be applied

  • resid_abs_tol1e-10Absolute Tolerance for flow rate residual equation

    Default:1e-10

    C++ Type:double

    Options:

    Description:Absolute Tolerance for flow rate residual equation

  • boundaryThe list of boundary IDs from the mesh where this boundary condition applies

    C++ Type:std::vector

    Options:

    Description:The list of boundary IDs from the mesh where this boundary condition applies

  • internal_var_rate_user_objectsList of User object names that computes internal variable rates and derivatives

    C++ Type:std::vector

    Options:

    Description:List of User object names that computes internal variable rates and derivatives

  • store_stress_oldFalseParameter which indicates whether the old stress state, required for the HHT time integration scheme and Rayleigh damping, needs to be stored

    Default:False

    C++ Type:bool

    Options:

    Description:Parameter which indicates whether the old stress state, required for the HHT time integration scheme and Rayleigh damping, needs to be stored

  • flow_rate_user_objectsList of User object names that computes flow rate and derivatives

    C++ Type:std::vector

    Options:

    Description:List of User object names that computes flow rate and derivatives

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector

    Options:

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Options:

    Description:Set the enabled status of the MooseObject.

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Options:

    Description:The seed for the master random number generator

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Options:

    Description:Determines whether this object is calculated using an implicit or explicit form

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Options:NONE ELEMENT SUBDOMAIN

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeSubdomainProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector

    Options:

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names were you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector

    Options:

    Description:Vector of output names were you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

Input Files

Child Objects

References