InterfaceDiffusionBoundaryTerm

under construction:Undocumented Class

The InterfaceDiffusionBoundaryTerm has not been documented, if you would like to contribute to MOOSE by writing documentation, please see Documenting MOOSE. The content contained on this page explains the typical documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.

Add weak form surface terms of the Diffusion equation for two different variables across a subdomain boundary

Input Parameters

  • neighbor_varThe variable on the other side of the interface.

    C++ Type:std::vector

    Options:

    Description:The variable on the other side of the interface.

  • variableThe name of the variable that this boundary condition applies to

    C++ Type:NonlinearVariableName

    Options:

    Description:The name of the variable that this boundary condition applies to

Required Parameters

  • save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector

    Options:

    Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • D1Diffusion coefficient

    Default:1

    C++ Type:double

    Options:

    Description:Diffusion coefficient

  • _moose_baseInterfaceKernel

    Default:InterfaceKernel

    C++ Type:std::string

    Options:

  • diag_save_in_var_sideThis parameter must exist if diag_save_in variables are specified and must have the same length as diag_save_in. This vector specifies whether the corresponding aux_var should save-in jacobian contributions from the master ('m') or slave side ('s').

    C++ Type:MultiMooseEnum

    Options:m s

    Description:This parameter must exist if diag_save_in variables are specified and must have the same length as diag_save_in. This vector specifies whether the corresponding aux_var should save-in jacobian contributions from the master ('m') or slave side ('s').

  • diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector

    Options:

    Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • save_in_var_sideThis parameter must exist if save_in variables are specified and must have the same length as save_in. This vector specifies whether the corresponding aux_var should save-in residual contributions from the master ('m') or slave side ('s').

    C++ Type:MultiMooseEnum

    Options:m s

    Description:This parameter must exist if save_in variables are specified and must have the same length as save_in. This vector specifies whether the corresponding aux_var should save-in residual contributions from the master ('m') or slave side ('s').

  • boundaryThe list of boundary IDs from the mesh where this boundary condition applies

    C++ Type:std::vector

    Options:

    Description:The list of boundary IDs from the mesh where this boundary condition applies

  • D_neighbor1Neighbor variable diffusion coefficient

    Default:1

    C++ Type:double

    Options:

    Description:Neighbor variable diffusion coefficient

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector

    Options:

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Options:

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Options:

    Description:Determines whether this object is calculated using an implicit or explicit form

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Options:

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

Input Files

References